

Post-harvest technologies for small farmers

Martin Gummert

Senior Scientist, Mechanization and Postharvest Cluster Leader, IRRI

This talk

- Introduction
- Postharvest losses
- Postharvest technology and management
- Markets and business models
- Multi stakholder platforms for adaptation
- Sustainable rice prodcution and processing

IRRI's Global Presence

- 1,200 staff, 36 nationalities
- 600 research and development partners worldwide
- Working in 14 countries

Situation analysis

Feeding a world of 9 billion

1.2 billion more people in developing countries and in urban areas by 2030

- Global rice consumption increasing from 150 million to 450 million tons
- More than 90% of this rice is eaten in Asia, including the region's 560 million people

Urbanization

countries

by 2030
80%
of the global
middle class will
live in developing
2 billion will live

2 billion will live in urban slums

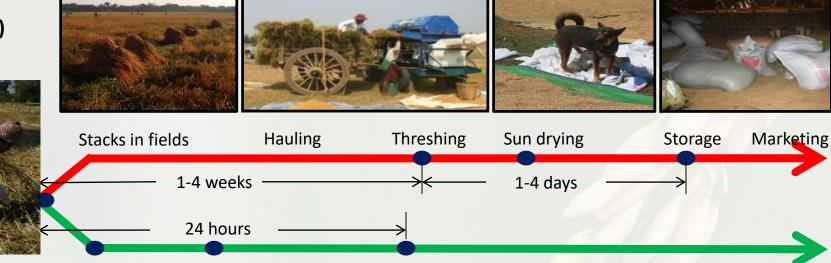
double today's

Women continue to face significant constraints in accessing agricultural assets, inputs, and services.

Climate change

Because of climate change, land degradation directly affects

74% of the poor globally


Asian Rice Farming Communities

Example: Postharvest Situation in Myanmar

High losses and poor quality

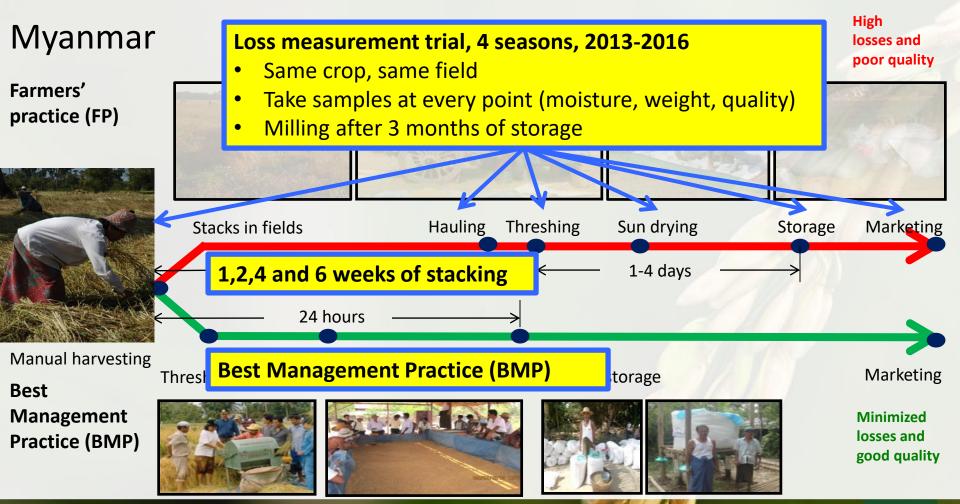
Farmers' practice (FP)

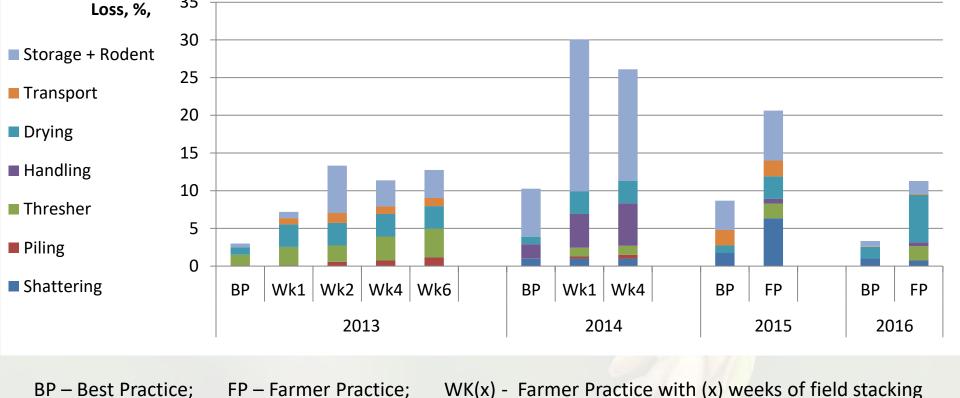
Manual harvesting

Best Management Practice (BMP)

Threshing

Mechanical drying


Hermetic storage



Marketing

Minimized losses and good quality

Postharvest loss measurements, Myanmar

Physical

35

Quality losses

Paddy quality

Sample taken from farmer's granary, Myanmar, 2015

Milled rice quality

Sample taken from rice mill, Myanmar, 2015

Quality losses

Paddy quality

Milled rice quality

But: Local traders and millers won't pay higher price for better quality

How to encourage farmers to invest in reducing losses?

Sample taken from farmer's granary, Myanmar, 2015 Sample taken from rice mill, Myanmar, 2015

Response options

- Technology
- Business models
- Market linkages
- Strengthened value chain support services
- Multi Stakeholder Platforms

Objectives

- 1. Minimizing losses
- 2. Maximizing profits
- 3. Sustainable rice production

Recent development in Asia: Combine harvesting

Advantages

- Labor saving
 - 2 instead of 34 persons / day / ha
- Potential to cut harvesting losses to 1-2%
- Cutting harvesting cost up to 50%

Key challenges in Asia

- Small farm sizes (average 2ha)
- Small field sizes (0.1-0.5ha)
- Wet fields during wet season
- Difficult field access
- Poor road network
- Predominantly bag handling
- Poor support services
- Open field burning of straw

Drying

Sun drying

- Estimated 80-85% of paddy sun dried in S- and SE-Asia
- 2-5% physical losses and 10-15% lower head rice
- Lack of market driven incentives for use of dryers
- · Effect of combine harvesting
 - Paddy harvested at higher moisture content
 - Larger amounts of grains in shorter period of time

Flat bed dryer

- Rice husk furnace
- · Capacity 2t..20t
- Introduced by IRRI + Nong Lam University in 2006.
 As of 2016
 - Myanmar: > 1,500
 - Indonesia: > 400
 - Lao PDR: > 100
 - Cambodia, Philippines: several 100
 - Few units in Bangladesh, Nigeria, ...

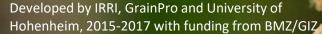
A new technology for the village level The Solar Bubble Dryer

- 270 units sold in 2016-2017 (Source: GrainPro), around 450 by 2018
- Uses only solar energy, no operating cost except for labor
- Drying time similar to sun drying during sunny days; protection from rain, animals
- Energy optimization and cost reduction ongoing (GIZ funded)

Verification with farmers in Myanmar

U Saw Kenndy, Tar Pet Village

Problems with Version 1


- High price
- Some condensation
- Mixing of paddy
- Space requirement

Optimization

- Modeling drying process f(weather, grain MC..)
- Dryer management
- Optimizing blower
- Reduce cost

Results

Energy optimized Mark 2 currently being designed, release in second half of 2018

Storage issues in Asia

Farm level: Myanmar, Cambodia, Lao PDR High losses, indebtedness – farmers store less

Silos: Mostly failures
Technical an management problems

Large, commercial scale

CAP storage in India in the open, covered by LDPE plastic sheets (left, source Indiamart);

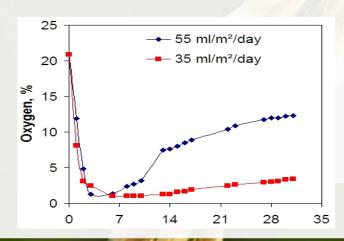
Wheat spilling out of damaged sacks at a CAP storage facility of the Food Corporation of India, Haryana (right: The Hindu, February 12, 2014)

Hermetic Sealed Storage Systems

Local containers

50 kg "Super bag"

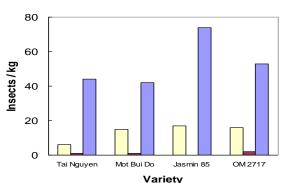
1t GrainSafe™



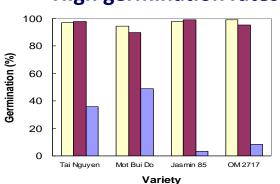
5t Cocoon™

Principle

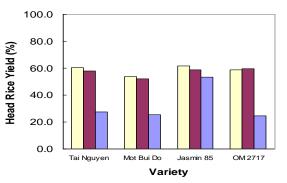
- Airtight enclosure
- Biological activity reduces O₂
- Insects die or become inactive
- Plastic controls moisture


Save storage without pesticides

Drop of oxygen over time (days) in plastic bags with different oxygen permeability


Benefits of Hermetic Storage

Insect control


No pesticides / fumigation (farmers often store inside the house to avoid theft)

High germination rates

Farmers in SE Asia use around 80% own seeds and use high seed rates to compensate for low germination -> more grains to sell

Higher milling returns

More grain to sell

Also controls moisture content -> protection from mycotoxins

Initial sample

After 8 months hermetic storage

After 8 months traditional storage

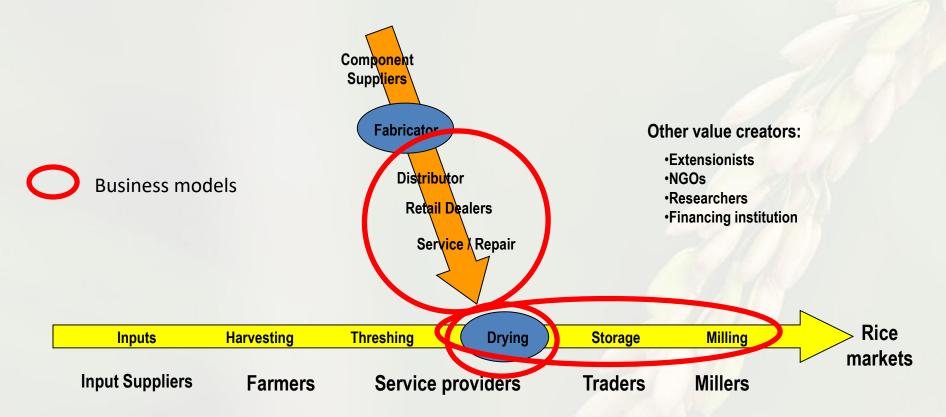
Source: IRRI - Bac Lieu Seed Center, Vietnam collaboration Eight months of storage, 4 varieties, comparing IRRI Super bag with farmers practice

Industry / Group Level Hermetic Storage: Cocoons™

- 5t 1050t
- Option for fumigation
- Can be installed outdoors
- No electricity needed

Opened Cocoons™ (Photo: GrainPro)

TranSafeliner™ at processing company



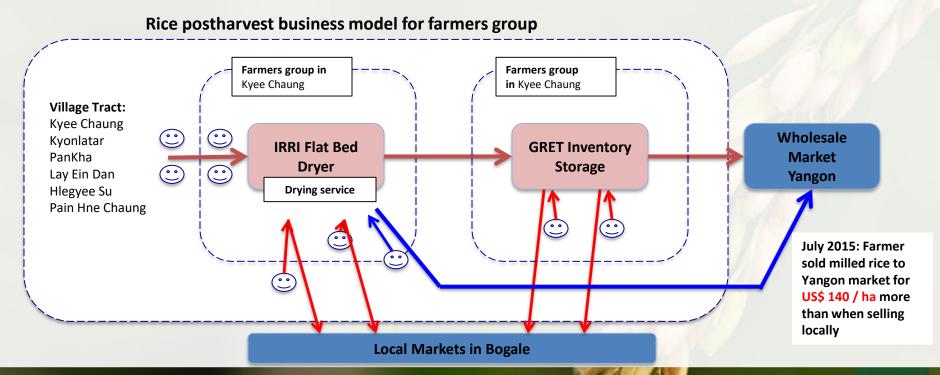
300t Cocoons™ in Peru (Photo: GrainPro)

Value chain approach and business models

Horizontal rice value chain with vertical linkage (equipment value chain)

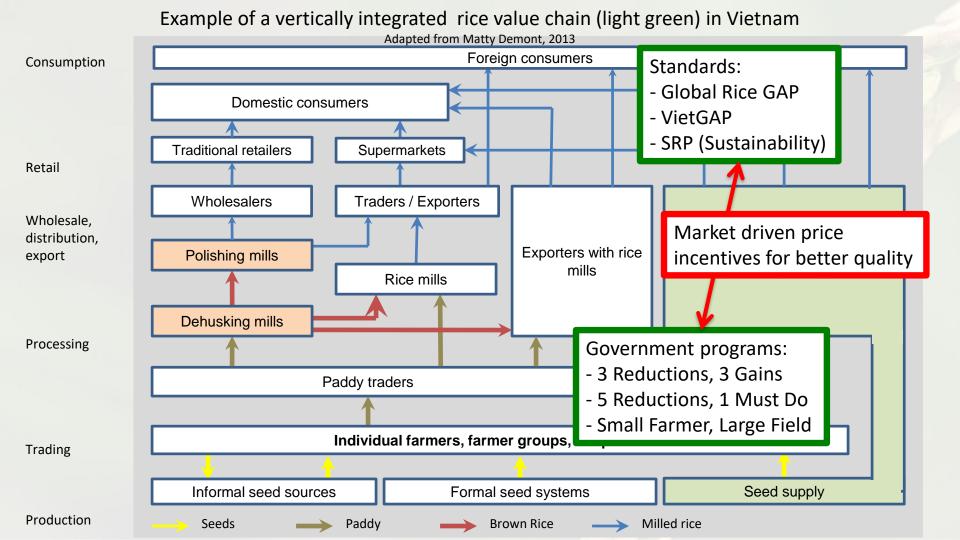
Heirloom Rice Project, Philippines

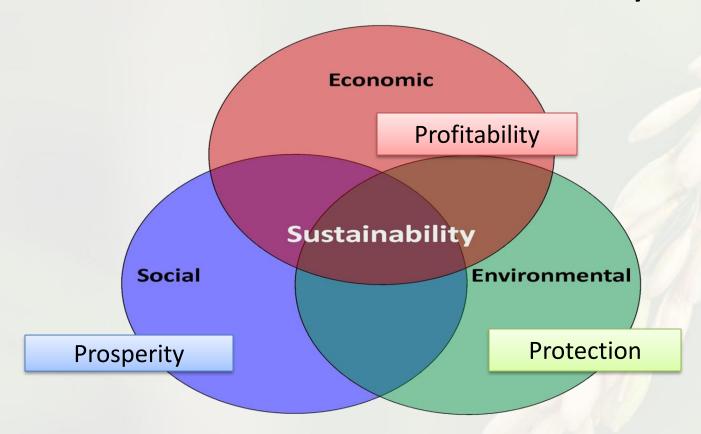
Department of Agriculture, support from Kellogg's


- Keep farmers from the mountainous areas engaged in rice farming / maintaining the landscape and varieties
- Improved postharvest processing and handling
 - Improved milling, hermetic storage, branding
- Premium market
 - Export to the US
 - Premium market in Manila

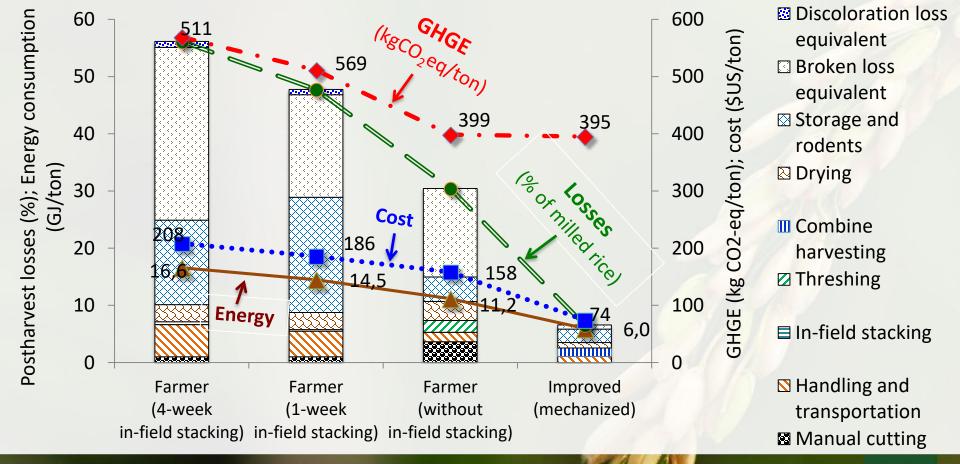
Improving Village Level Value Chains

IRRI Postharvest Site in Bogale (LIFT: 2012-2015)


Idea: Process paddy to produce high quality for joint sales by farmers to premium markets with higher prices for better quality


Private sector and market linkages through Learning Alliances (LA) A Learning Alliance Learning Cycle Export markets? **Support services** (e.g. financing) Milled rice LA LA wholesale Market LA LA Visit to other Business models, farmers LA LA out-scaling Dryer manufacturer Varieties and understanding markets Sources: Local IRRI LIFT / millers Management of technology by farmers group LA ACIAR DOA *Projects;* Improved postharvest technology LA staff Douthwaite, CIAT Awareness creation for postharvest losses and quality LA established **PIPA** Participatory Impact Pathway Analysis Workshop LA, other village **Farmers**

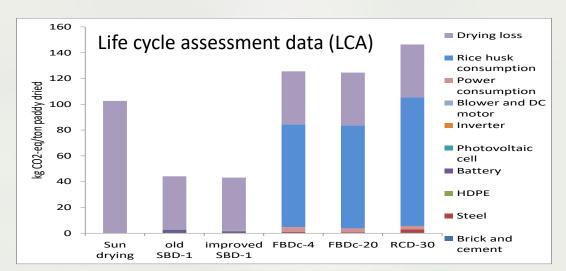
added


Low quality, high loss Quality increase, Loss reduction

Dimensions of Sustainability

Identify **best postharvest management practices** – MyRice project (Myanmar)

Example: GHGE from different drying systems



Recirculating Batch Dryer (RC)

(SBD-1: Original Solar Bubble Dryer with 1-ton capacity, Improved SBD-1 with 1t capacity; FBDc-x: flatbed dryer with 4t and 20t capacity, RCD: recirculating batch dryer; numbers after the mechanical dryer state the capacity per batch).

Machinery consumes energy

- Production
- Operation
- De-commissioning

GHGE THE Balance?

Losses reduced by 60% compared to sun drying (data from Myanmar trials)

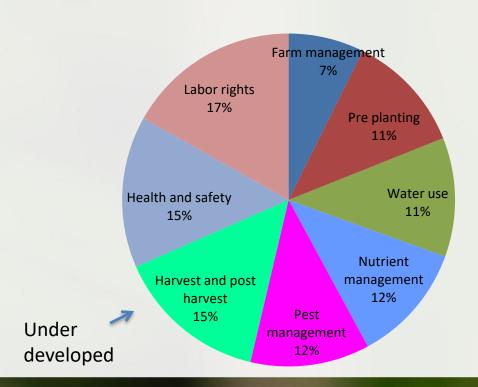
Source: "Optimization of a Solar Bubble Dryer for drying rice and other commodities" Project, 2016-2018, funded by BMZ/GIZ

Multi-stakeholder global alliance..

..among 64 institutions representing governments, private sector actors, NGOs, international research community

CURRENT RICE SECTOR CHALLENGES

- Stagnating yield growth
- Resource inefficiency
- Environment / biodiversity impacts
- Contribution to climate change
- Impacts of climate

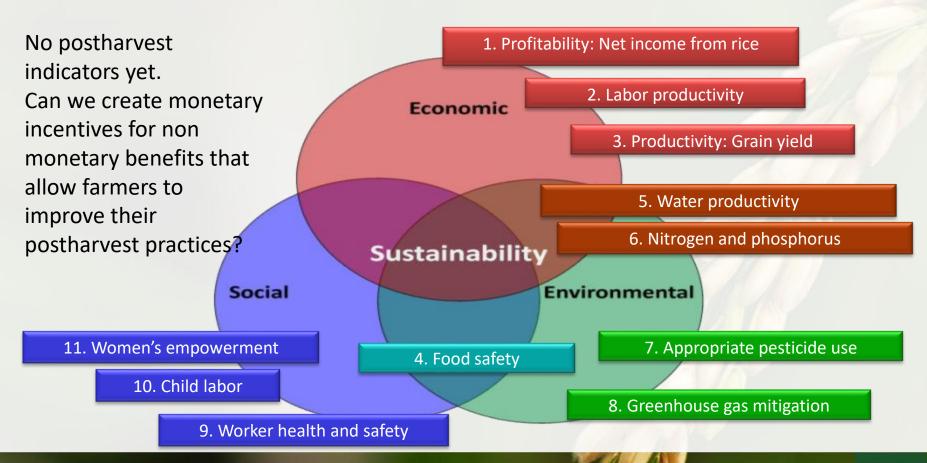


- Unique standard
- Supported by a global multistakeholder network
- Tailored to smallholder needs
- Aims to maintain productivity while minimizing

environmental and social footprint

Sustainability Standards launched December 2015

46 requirements in 8 sustainability dimensions


"The soil is safe from heavy metals such as arsenic, cadmium, chromium, mercury, and lead"

"The farmer attends training or regularly seeks professional advice"

"Efficient and site-specific nutrient management is applied"

"Children living on the farm in the age of compulsory schooling go to school all year long"

NEXT: QUANTITATIVE INDICATORS

Conclusions

- Technologies for improved farm level postharvest operations are available and tested
- Little incentives for farmers to invest / use them
- Need for value chain approach that links farmers to markets and business models for economic use of technologies
- Can we create monetary benefits for farmers from non-monetary benefits of using technologies?
- IRRI is very interested in sharing experiences, technologies and in collaboration

IRRI

- 17 OCTOBER 2018 MARINA BAY SANDS, SINGAPORE

www.ricecongress2018.irri.org

BE PART OF THE DISCUSSION

Participate in the world's largest gathering of rice scientists, industry experts, and market players from 14-17 October 2018.

> Connect with us. @IRRI.ricenews

For sponsorships, participation, and speaking opportunities, contact us at ricecongress@irri.org or visit ricecongress2018.irri.org for more details.

DIRRI