Meeting sustainable intensification goals in agriculture

Cameron M. Pittelkow

Assistant Professor Department of Crop Sciences University of Illinois, USA <u>cmpitt@illinois.edu</u>

XIII Conferencia Internacional de Arroz para América Latina y el Caribe

"Alianzas para la sostenibilidad de la producción arrocera"

Mayo 15 al 18, 2018 - Piura, Perú

Outline

- Background
- Global context for Sustainable Intensification (SI)
- Research example: Rice in Uruguay
- Opportunities for accelerating SI efforts
- Example platforms and tools

Graduate school

University of Illinois

US Midwest: sustainable N management

Goals for this presentation

- Bring in an outside perspective
- Share experiences with SI research/metrics as an agronomist
- Discuss alliances/partnerships for impact

Outline

- Background
- Global context for Sustainable Intensification (SI)
- Research example: Rice in Uruguay
- Opportunities for accelerating SI efforts
- Example platforms and tools

Yield gaps for rice, wheat, and maize

Major cereals: attainable yield achieved (%)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0%

Mueller et al. 2013 Nature

Environmental concerns

Energy consumption

Water resources

Nutrient pollution

Developing regions

Smith et al. 2007 IPCC; Foley et al. 2011 Nature; Tilman et al. 2012 PNAS; Vermeulen et al. 2012 Annu. Rev. Environ. Resour.

The challenge: sustainable intensification

Agricultural productivity

Premises underlying SI

- 1) Increased production
- 2) Higher yields per unit area to avoid the environmental costs of agricultural expansion
- 3) Equal emphasis on food security and environmental sustainability
- 4) Denotes a goal but does not specify how it should be attained

The missing elements? Social equity, human health and well-being

Progress?

Despite much emphasis at international scales, there are limited large-scale examples evaluating whether it is possible to achieve these often conflicting goals The reality: systems are complex

- C footprint
- Energy consumption
- Water use efficiency
- Soil quality
- GHG emissions
- Nutrient losses
- Water quality

Leverage points: GHG emissions

XIII Conferencia Internacional de Arroz para América Latina y el Caribe

Carlson et al. 2017 Nature Climate Change

Outline

- Background
- Global context for Sustainable Intensification (SI)
- Research example: Rice in Uruguay
- Opportunities for accelerating SI efforts
- Example platforms and tools

Rice systems in Uruguay

INIA: Álvaro Roel, Gonzalo Zorrilla, José Terra, Sara Riccetto, Ignacio Macedo, Camila Bonilla

Increased production

National assessment

1) Estimate the sustainability impacts of rice intensification

2) Evaluate synergies and tradeoffs among indicators

Pittelkow et al. 2016 Global Food Security

Methods

Sustainability indicators	
Yields	Water productivity
Net energy yield	Agrochemical contamination risk
Nitrogen use efficiency	Carbon footprint

- Twenty year study period (1993-2013)
- National statistics (DIEA)
- INIA-rice industry working group statistics
- Reported information, conversion factors, or empirical data from the literature

Resource use efficiencies

el Caribe

Pittelkow et al. 2016 Global Food Security

Environmental indicators

Pittelkow et al. 2016 Global Food Security

Integrating metrics

- Increased energy efficiency while decreasing yieldscaled C footprint
- Concerns: N losses, agrochemical contamination risk, CH₄ emissions

Next steps

- Ongoing work with INIA and PhD student (Meng-Chun Tseng)
- Breaking the yield ceiling project with on-farm trials
- Participatory research design
- Explore environmental costs associated with future yield increases

Treatments and preliminary results

Yield

	Treatment	Mt ha-1
1	HYFP	11.62
2	+ Improved Cultivar	1.5%#
3	+ Seed Technology	-0.8%
4	+ Fertilization	0.9%
5	+ Micronutrient	-0.3%
6	+ Plant Protection	-1.0%
7	BMPP	12.10
8	- Improved Cultivar	-4.3%
9	- Seed Technology	2.3%
10	- Fertilization	-2.0%
11	- Micronutrient	1.2%
12	- Plant Protection	2.7%

INIA and Meng-Chun Tseng – PhD student

Treatments and preliminary results

			Yield	NUE	Net energy yield	Energy use efficiency	Yield-scaled C footprint	Yield-scaled agrochemical contamination risk
		Treatment	Mt ha-1	kg yield kg applied N ⁻¹	GJ ha ⁻¹	kg yield MJ ⁻¹	kg CO2e kg yield ⁻¹	PAF m ³ kg yield ⁻¹
	1	HYFP	11.62	167.55	165.27	0.973	0.075	29.75
	2	+ Improved Cultivar	1.5%#	1.5%	2.3%	2.2%	-1.8%	-1.8%
	3	+ Seed Technology	-0.8%	-0.8%	-0.1%	4.0%	-3.0%	-21.8%
	4	+ Fertilization	0.9%	-18.9%	0.1%	-10.4%	15.3%	-1.3%
	5	+ Micronutrient	-0.3%	-1.2%	0.4%	0.0%	0.1%	-0.7%
	6	+ Plant Protection	-1.0%	-1.2%	-1.4%	-1.2%	1.0%	1.1%
	7	BMPP	12.10	147.59	171.06	0.93	0.081	25.36
	8	- Improved Cultivar	-4.3%	-3.9%	-3.7%	-1.3%	1.9%	-8.9%
	9	- Seed Technology	2.3%	2.1%	2.7%	0.6%	-1.3%	9.6%
	10	- Fertilization	-2.0%	14.6%	-0.6%	8.4%	-10.0%	0.2%
	11	- Micronutrient	1.2%	-4.3%	1.6%	-0.6%	0.3%	-3.1%
	12	- Plant Protection	2.7%	3.1%	2.7%	2.6%	-2.9%	-4.1%
ncia Internacional				•		•		

INIA and Meng-Chun Tseng – PhD student

On-farm validation

XIII Conferencia Internacional de Arroz para América Latina y el Caribe

INIA and Meng-Chun Tseng – PhD student

Reflections

- Outcomes can change drastically depending on indicators included
- Little data available for comparison with other regions
- Once yield ceiling is approached, SI appears to become more difficult

Questions raised

- Acceptable levels of accuracy?
- How to define system boundaries in space or time (e.g. rotations)?
- Need for robust baseline data to improve estimates (e.g. longterm field trials)

Outline

- Background
- Global context for Sustainable Intensification (SI)
- Research example: Rice in Uruguay
- Opportunities for accelerating SI efforts
- Example platforms and tools

Key opportunities for SI at a global scale

- 1. Benchmark system performance
- 2. Explore thresholds for efficiency and set targets
- 3. Develop methods to account for tradeoffs (but keep it simple)

Comparing apples and oranges The current monitoring of spricultural systems captures only certain effects of farming, by focusing on marrow criteria. Several examples ables. In the United States, recent investment in the biofuel ethanol has reduced imports percleum¹. State has as required expensive foldola modelling data should be collected for

© 2010 Macmillan Publishers Limited. All rights reserved

security (people's access to food and the qual-

ity of that food), human health, and economic

monitor the effects of agriculture on the envi-

ronment, across major ecological and climatic

zones, worldwide. This would involve stake-

holders - policy-makers, farmers, consumers,

We propose establishing a global network to

and social well-being.

1. Benchmark system performance

XIII Conferencia Internacional de Arroz para América Latina y el Caribe

Musumba et al. 2017

2. Setting targets

Silva et al. 2017 Europ. J. Agronomy

3. Simple tools for assessing tradeoffs

XIII Conferencia Internacional de Arroz para América Latina y el Caribe

-Mz0 - - MzNP - - PP-Mz \cdots DLR

Snapp et al. 2018 Agric. Systems

Outline

- Background
- Global context for Sustainable Intensification (SI)
- Research example: Rice in Uruguay
- Opportunities for accelerating SI efforts
- Example platforms and tools

Alliances to support SI progress

- Harmonized frameworks for evaluation
- Effective monitoring systems to track progress
- Multi-disciplinary from the start
- Some incentive for farmer participation

Sustainable Rice Platform

- Global initiative for rice-based systems
- Key developers include food retailers
- Simple set of indicators to measure efficiency across diverse systems and environments

Indicators

Name of Indicator	Measurement	Source					
SRP Guiding Principle: Improved Livelihoods							
1. Profitability: net income from rice	USD/ha/crop cycle	Farm records					
	USD/ha/year	Household survey					
2. Labor productivity	kg paddy rice/no. of days	Farm records					
	USD net income from rice/no. of days	Household survey					
3. Productivity: grain yield	kg paddy/ha	Farm records					
		Household survey					
SRP Guiding Principle: Consumer Needs							
4. Food safety	kg safe milled rice/kg milled rice \times 100	Laboratory test					
SRP Guiding Principle: Resource-Use Efficiency							
5. Water-use efficiency: total water productivity	kg paddy/L (rainfall + irrigation)	Farm records					
		Household survey					
6. Nutrient-use efficiency: N	kg paddy/kg elemental N	Farm records					
	kg elemental N removal/kg elemental N input	Household survey					
7. Nutrient-use efficiency: P	kg paddy/kg elemental P	Farm records					
	kg elemental P removal/kg elemental P input	Household survey					
8. Pesticide-use efficiency	Balanced scorecard	Farm records					
		Household survey					
SRP Guiding Principle: Climate Change Mitigation							
9. Greenhouse gas emissions	Mg/CO ₂ eq/ha	Farm records					
		Household survey					
SRP Guiding Principle: Labor Conditions							
10. Health and safety	Balanced scorecard	Household survey					
11. Child labor	Balanced scorecard	Household survey					
SRP Guiding Principle: Social Development							
12. Women's empowerment	Balanced scorecard	Household survey					

Т

Fieldprint[®] Calculator, USA

Powerful tool, simple to use

The Fieldprint[®] Calculator is simple to use, though the technology behind it is very complex. The Calculator uses datasets and methodologies developed by multiple sources, including the Natural Resources Conservation Service of the United States Department of Agriculture

Available Online

Calculate your unique "Fieldprint" today and identify opportunities for a more sustainable tomorrow. Detailed directions are available

Home About Us Contact Us Members Privacy Policy Sitemap Follow us on: 📷

Learn how other growers have used the calculator to determine their "Fieldprint

of Field to Market® that spans across the

Learn more about Field to Market[®] and its mission to seek sustainable outcomes for agriculture.

© 2015 Field to Market[®]. All Rights Reser

Field to Market Members

Field to Market brings together a diverse group of grower organizations; agribusinesses; food, fiber, restaurant and retail companies; conservation groups; universities and agency partners to focus on promoting, defining and measuring the sustainability of food, fiber and fuel production.

fieldtomarket.org

Goals of calculator

Benchmarking

Sustainability Performance

Catalyzing Continuous Improvement

Sustainability Claims

fieldtomarket.org

Goals of calculator

On this page, you will locate your field and enter information about its soil and your crop rotation, management system, transportation, and drying practices. This information will be used to calculate your Fieldprint for a variety of indicators on the following tabs.

Instructions

- You are currently on the Start Tab which is where you will enter all field data. For help throughout the Calculator, please click on the blue 😟 for further instructions or definitions.
- See More.

To go back to previous tabs, please use the tabs rather than your browser's Back button

Latest Calculator Update: Bug Fix: Mar 17, 2016

Summary

Energy U Water Quality Runoff The values on the slider bars are relative indices where lower values (0) indicate greater efficiency and/or lower impacts on the particular resource area and higher values

particular resource area.

(100) indicate lower efficiency and/or higher impacts on the

🔻 You 🔺 State Average 🔻

High ← Resource Efficiency → Low

More Efficient ↔ Less Efficient

The Fieldprint values shown for a selected crop on the slider bars are plotted on the above Spidergram. The Spidergram axes are relative indices representing your resource use or impact per unit of output in each of the five resource areas. Lower values closer to the center indicate a lower impact on each resource.

ome About Us Contact Us Members Privacy Policy Sitemap

© 2016 Field to Market[®]. All Rights Reserve

XIII Conferencia Internacional de Arroz para América Latina

fieldtomarket.org

Carbon offset protocols (USA)

Conclusions

- Baseline knowledge of key indicators and tradeoffs is low
- Realistic expectations for SI may depending on existing yield gaps
- Environmental indicators will need continuous improvement
- The imperative of SI is common knowledge
- Next generation is being trained to tackle these issues
- Successful examples and frameworks for evaluation exist

Questions?

